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a b s t r a c t 

For reasons of mathematical tractability and historic convention, previous studies on periodic-review in- 

ventory control policies under uncertainty have typically accounted inventory related costs at the end of 

each review period. Inventory holding and shortage costs in reality, however, often accrue continuously 

in time. Given this discrepancy, it is necessary to understand the impact of end-of-period cost account- 

ing. We address this issue for serial inventory systems adopting fixed-interval ordering in this paper. Our 

contribution is two-fold. First, we develop a model to evaluate and optimize a serial inventory system 

where inventory holding and shortage costs accrue continuously in time. This model includes discrete- 

time cost accounting that evaluates inventory holding and shortage costs at a single or multiple discrete 

points in a reorder interval as a special case. Second, we assess the effect of applying discrete-time cost 

accounting when inventory holding and shortage costs actually accrue continuously in time. We make 

three observations. First, for single-stage systems, end-of-period cost accounting generally results in very 

significant cost inefficiency and this cost inefficiency is bounded below by the ratio of inventory holding 

cost to backordering cost asymptotically as the reorder interval increases. Second, for multiple-stage sys- 

tems, the cost inefficiency of end-of-period cost accounting decreases with the number of stages but is 

still significant for a typical serial system. Finally, extending cost accounting from the end to multiple dis- 

crete points in a reorder interval does not provide a significant modelling and computational advantage 

as compared to our continuous-time cost accounting model. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Studies on periodic-review inventory control policies under un-

ertainty began with the classic newsvendor model ( Arrow et al.,

951; Bellman et al., 1955; Clark and Scarf, 1960 ). Because of the

aily nature of newspapers, the newsvendor model accounted in-

entory related costs based on the inventory level at the end of

he day. Following this tradition and for reasons of mathematical

ractability, subsequent studies on periodic-review inventory con-

rol policies have typically accounted inventory related costs based

n the inventory level at the end of each review period (see, for

xample, Chao and Zhou, 2009; Chen and Zheng, 1994; van Hou-

um et al., 2007 , and Shang and Zhou, 2010 ). However, costs for

olding inventory such as costs of capital tied up with stock, costs

or storage space and facility, and costs due to spoilage and obso-

escences, etc., usually accrue continuously in time. According to

ahmias (2009) , the most significant cost component for holding
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nventory is the opportunity cost for the capital invested in inven-

ory which accrues continuously in time. Similar arguments can

lso be made for the costs of backlogging shortage. In reality, the

ost of stock-out depends on not only the amount but also the du-

ation. Since the inventory level at the end of a review period ig-

ores variations during the period, end-of-period cost accounting

oes not provide an accurate evaluation of these inventory related

osts ( Rudi et al., 2009 ). As a result, an inventory control policy

hat minimizes system cost evaluated based on the end-of-period

nventory level may not be optimal. This calls for an evaluation of

nd-of-period cost accounting when inventory related costs actu-

lly accrue continuously in time. 

We address this issue for serial inventory systems in this pa-

er. Rudi et al. (2009) studied this issue for the classical single-

eriod newsvendor model. They showed that, when inventory re-

ated costs actually accrue continuously in time, end-of-period cost

ccounting using the same continuous-time cost parameters leads

o higher (than optimal) order-up-to inventory levels and hence

igher inventory related costs. Nevertheless, they found that the

se of end-of-period cost accounting can be justified by adjusting

he cost parameters and demand distribution. Unfortunately, this

https://doi.org/10.1016/j.cor.2020.104902
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approach may not be applicable for a serial inventory system. To

the best of our knowledge, no method has been developed to eval-

uate and optimize a general serial inventory system where inven-

tory holding and shortage costs accrue continuously in time. Con-

sequently, even if there are adjustments on cost parameters and

demand distribution that can justify the use of end-of-period cost

accounting, it is difficult to identify such adjustments. As such, the

objective of the current study is to first develop an approach to

evaluate and optimize a serial inventory system where inventory

related costs accrue continuously in time. Using this solution, we

subsequently assess the impact of cost accounting methods on sys-

tem stock and cost. 

We consider an N -stage serial inventory system, in which cus-

tomer demand arises at only the most downstream Stage 1 and

Stage j orders exclusively from the immediate upstream Stage j + 1

for j = 1 , . . . , N. Stage N + 1 is assumed to be an external supplier

that has unlimited capacity and hence is always able to meet an

order from stage N immediately in its entirety. An internal stage

j for j = 1 , . . . , N, however, can meet the demand from the next

downstream stage (or from external customers for Stage 1) only

when stock is available. Demand that is not satisfied by on-hand

inventory is fully backlogged. Ordered stock is delivered after a

constant leadtime. 

In view of the literature, we assume that the system adopts

fixed-interval ordering, in which each stage orders from the up-

stream stage in a fixed-interval. Fixed-interval ordering has be-

come a common practice for supply chains to facilitate freight

consolidations and logistics/production scheduling ( Graves, 1996;

Marklund, 2011 ). According to Chao and Zhou (2009) , an optimal

fixed-interval ordering policy for a serial inventory system must

be nested and synchronized. This requires that Stage j orders in

a fixed interval that is an integer multiple of the fixed interval at

the downstream Stage j − 1 and always synchronizes the arrival

of a shipment from Stage j + 1 with an order from Stage j − 1

for j = 2 , . . . , N. Moreover, given a nested and synchronized re-

plenishment schedule, previous studies have shown that echelon

base-stock policies are optimal for both finite and infinite plan-

ning horizons ( Chao and Zhou, 2009; Chen and Zheng, 1994; Clark

and Scarf, 1960; Federgruen and Zipkin, 1984; van Houtum et al.,

2007 ). Based on these findings, we consider a nested and synchro-

nized fixed-interval echelon base-stock policy for the serial inven-

tory system. To focus on the effects of cost accounting method, we

assume that the system replenishment schedule is exogenously de-

termined and therefore consider only inventory holding and back-

ordering costs. The system cost structure includes a linear cost for

holding one unit of stock per unit time at each stage and a linear

cost for backlogging a unit of demand per unit time at Stage 1. 

Periodic-review inventory control policies for multi-echelon in-

ventory systems have been commonly evaluated by the echelon-

stock approach. For an N -stage serial inventory system, echelon j

refers to the portion of the system from the most downstream

Stage 1 up to Stage j and echelon inventory level j (or alternatively

echelon stock j ) is defined as all inventories on hand or in transit

in Echelon j minus backorders at Stage 1 for j = 1 , . . . , N. By this

definition, the difference between echelon inventory levels j and

j − 1 represents the inventory on hand at Stage j plus the inven-

tory in transit from Stage j to Stage j − 1 . Consequently, at a given

point in time, the expected inventory at Stage j for j = 1 , . . . N

and backorder at Stage 1 can be evaluated by characterizing the

(limiting) distributions for the echelon inventory levels j = 1 , . . . N.

The instantaneous expected inventory holding and backordering

costs can be obtained accordingly by multiplying the expectations

by the appropriate cost parameters. Under end-of-period cost ac-

counting, expected inventory related costs are evaluated at the

end of the fixed reorder intervals at Stage 1. This cost evaluation

method began in the seminal papers by Arrow et al. (1951) and
ellman et al. (1955) and has become a convention for studies on

eriodic-review inventory models ( Chen and Zheng, 1994; Clark

nd Scarf, 1960; Chao and Zhou, 2009; van Houtum et al., 2007;

hang and Zhou, 2010 ). 

Technically, the echelon-stock method can be used under any

ost accounting scheme provided that the (limiting) distributions

or all echelon inventory levels can be characterized and the in-

tantaneous expected inventory related costs can be integrated

ccordingly over a system reorder cycle. These tasks, however,

eem to be cumbersome when inventory holding and backorder-

ng costs accrue continuously in time. In view of the literature,

ao (2003) started the recent interest in periodic-review inventory

ontrol policies under continuous-time cost accounting. The objec-

ive of his study was to compare the commonly used periodic-

eview ( R, T ) policy, in which stock is ordered in a fixed interval T

o raise the inventory position to R , to the continuous-review ( Q,

 ) policy, in which a fixed batch of size Q is ordered whenever

he inventory position drops to r , for a single-stage system. Be-

ause the ( Q, r ) policy monitors the inventory position and evalu-

tes the inventory related costs continuously in time, the ( R, T ) pol-

cy must be evaluated and optimized accordingly. His study high-

ighted the reality whereby inventory related costs often accrue

ontinuously in time and led to other studies on periodic-review

nventory control policies under continuous-time and other cost

ccounting schemes ( Avinadav, 2015; Avinadav and Henig, 2015;

iu and Song, 2012; Rudi et al., 2009 ). Subsequently, Feng and

ao (2007) attempted to extend the ( R, T ) policy to a two-stage

erial system under continuous-time cost accounting. Due to dif-

culties in finding a tractable evaluation, they used simulation to

valuate the system cost. More recently, Wang (2013) considered a

wo-level distribution system that consists of a warehouse and a

roup of identical retailers adopting a common fixed reorder inter-

al. Assuming that warehouse stock is optimally allocated to min-

mize system cost when facing a shortage, he developed an ap-

roach to evaluate the inventory related costs at the retailers con-

inuously in time based on the stocking conditions at the ware-

ouse. Meanwhile, Wang and Liu (2015) revisited the two-stage

erial system that was considered by Feng and Rao (2007) . They

bserved that, given the time elapsed from a warehouse reorder

oint until the demand at the retailer accumulates to the ware-

ouse (installation) stock level, the expected cost at the retailer

an be evaluated as a single-stage ( R, T ) policy with an extension

n the leadtime. They developed a simple cost evaluation for the

ystem when demand follows a Poisson process. In sum, the lit-

rature on periodic-review inventory control policies for inventory

ystems where inventory related costs accrue continuously in time

s still very limited. This is particularly the case for multi-echelon

nventory control systems. 

In this paper, we develop an approach to evaluate a general se-

ial inventory system. In contrast to the echelon-stock approach,

e develop our evaluation based on installation stock. Specifically,

e start with Echelon 1 and observe that the expected cost in a

eorder cycle is completely determined by the installation stock at

tage 2 at the time of ordering. As such, a cost evaluation can be

eveloped conditioned on the installation stock at Stage 2. In the

ame way, the expected cost in a reorder cycle at Echelon 2 can be

valuated conditioned on the installation stock at Stage 3, etc. Us-

ng this observation, we develop a recursive approach to evaluate

he expected inventory holding and backordering costs in the sys-

em. This approach uses only the demand distribution, is easy to

ollow and compute, and can be used under any cost accounting

ethod. 

Subsequently, we characterize the optimal order-up-to levels

nder a given replenishment schedule. Using the explicit cost eval-

ation that is developed in this study, we derive a simple way to

etermine the optimal base stock level for each stage or echelon.
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pecifically, consider a unit of stock at Stage j + 1 at a reorder

oint for the downstream Stage j . Intuitively, this unit of stock

hould be shipped to Stage j if the marginal cost at Echelon j is

ower than the cost for holding it at Stage j + 1 . Consequently, an

ptimal base stock level at Stage j is reached when the two costs

re equal. We prove that a unique optimal ordering policy is de-

ermined by this condition at each echelon given the base stock

evels at the downstream stages. This leads to a simple bottom-

p recursive approach to identify an optimal ordering policy for a

iven replenishment schedule. 

Finally, we assess the effect of cost accounting methods. We

tart with single-stage systems and demonstrate numerically that

nd-of-period cost accounting generally results in extensive excess

tock and hence very significant cost inefficiency. Moreover, we

rove that both the excess stock and cost inefficiency are bounded

elow by the ratio of inventory holding cost to backordering cost

symptotically as the reorder interval increases for single-stage

ystems. Subsequently, we consider multiple-stage serial inventory

ystems and show numerically that the excess stock and cost in-

fficiency caused by end-of-period cost accounting decrease with

he number of stages. Nevertheless, they are still often significant

or typical three-stage serial inventory systems. Finally, in view of

he literature, we consider extending end-of-period cost account-

ng to discrete-time cost accounting that evaluates system costs

t multiple discrete points in each reorder interval of Stage 1. Our

umerical studies show that, given a typical approximation accu-

acy of 2%, this extension normally does not provide any compu-

ational advantage as compared to the solution we develop under

ontinuous-time cost accounting in the current study. 

The rest of the paper is organized as follows. Section 2 for-

ulates the model, Section 3 develops the system cost eval-

ation, Section 4 characterizes the optimal ordering policy,

ection 5 presents a numerical study, and finally Section 6 con-

ludes the study. 

. Model formulation 

We consider an N -stage serial inventory system (see Fig. 1 ) and

ssumes that the system adopts a synchronized and nested eche-

on base-stock policy. Specifically, we let Stage j order from Stage

j + 1 in a fixed interval of length T j to raise the echelon inven-

ory position (abbreviated as IP hereafter) to a fixed base-stock

evel S j , whereby T j+1 = n j+1 T j and n j+1 is a positive integer and

tage j places an order upon the arrival of every shipment at Stage

j + 1 for j = 1 , . . . , N. Stage N + 1 is defined as an external sup-

lier with unlimited stock and echelon IP is defined as inventory

n hand or in transit in the echelon plus outstanding orders minus

ackorders at Stage 1. By this definition, the replenishment sched-

le and ordering policy at echelon j = 1 , . . . , N are fully defined

y T j = (T 1 , . . . , T j ) and S j = (S 1 , . . . , S j ) , respectively. To facilitate

he analysis below, we note that S j can be defined equivalently

ased on installation stock. Namely, let R 1 = S 1 and R j = S j − S j−1 

or j > 1. The ordering policy at Echelon j is equivalent to raising

he installation IP at Stage j to R j and the echelon IP at Stage j − 1

o S j−1 . We refer to R j = (R 1 , . . . , R j ) as the installation-stock defi-

ition of the ordering policy at Echelon j = 1 , . . . , N hereafter. 

In addition, we define the following parameters for j = 1 , . . . , N:

λ = mean customer demand rate per unit time, 
Fig. 1. N-stage se
l j = constant leadtime to ship stock from Stage j + 1 to Stage j , 

h j = installation cost for holding one unit of stock per unit time

t Stage j , and 

b = cost for backlogging one unit of demand per unit time at

tage 1. 

We assume that the demand at Stage 1 has stationary and

ndependent increments. This holds true for the commonly used

ompound Poisson process and the normal demand model. Let

(t) = D [ a, a + t) denote the cumulative demand over the interval

 a, a + t) of length t . We assume that X ( t ) is stochastically non-

ecreasing in t with mean λt , density or mass function g ( x, t ),

nd cumulative distribution function (c.d.f.) G ( x, t ) ( Liu and Song,

012; Rao, 2003 ). We conduct the analysis for the case of contin-

ous demand, i.e., G (x, t) = 

∫ x 
0 g(y, t) dy . When demand is discrete,

e need only to change the integration to summation accordingly,

.e., G (x, t) = 

∑ x 
y =0 g(y, t) . 

To facilitate the analysis below, we also define the following

ost functions for Echelon j = 1 , . . . , N: 

π j ( R j , T j | · ) = the expected cumulative inventory holding and

ackordering cost in a replenishment cycle and 

C j (R j , T j |·) = π j (R j , T j |·) /T j = the expected inventory holding

nd backordering cost per unit time in a replenishment cycle, given

he replenishment schedule T j and ordering policy R j . 

We note that π j ( R j , T j | · ) and C j ( R j , T j | · ) are actually functions

f R j and T j . We keep only R j and T j in the notation for simplicity

nd convenience of analysis below. 

. Evaluation of expected inventory related costs in the system 

Under the inventory control policy that is defined above, the

ystem regenerates every time when Stage N orders from the ex-

ernal supplier. To evaluate the long-run system cost, we need to

onsider only one system regenerative cycle. The long-run average

nventory related cost per unit time in the system is then given by

he obtained expected cost divided by the cycle length. 

We start with Stage 1. The following basic evaluation is straight-

orward ( Wang, 2013 ). 

emma 1. Let Stage 1 order from Stage 2 at time 0 (normalized to

ime 0 if otherwise), raising the IP at Stage 1 to R 1 . Then the expected

nventory holding and backordering cost at Stage 1 in the interval

 l 1 , l 1 + T 1 ) is given by 

1 (R 1 , T 1 ) = b[ λ(T 1 / 2 + l 1 ) − R 1 ] T 1 + (h 1 + b) I 1 (R 1 , T 1 ) (1)

here I 1 (R 1 , T 1 ) = 

∫ l 1 + T 1 
l 1 

∫ R 1 
0 

G (x, t) d xd t is the expected on-hand in-

entory in the interval. 

roof. At any time t ∈ [ l 1 , l 1 + T 1 ) , the inventory level at Stage 1 is

qual to R 1 − D [0 , t) and hence the instantaneous expected inven-

ory holding and backordering cost is equal to 

 (R 1 , t) = E[ h 1 (R 1 − D [0 , t)) + + b(D [0 , t) − R 1 ) 
+ ] 

= (h 1 + b) 

∫ R 1 

0 

(R 1 − x ) g(x, t) dx + b(λt − R 1 ) (2) 

here (x ) + = max { 0 , x } . The cumulative expected inventory hold-

ng and backordering cost in the interval [ l 1 , l 1 + T 1 ) is then given

y π1 (R 1 , T 1 ) = 

∫ l 1 + T 1 
l 1 

u (R 1 , t ) dt , which yields (1). �

We note that π (R , T |·) = π (R , T ) for Stage 1. 
1 1 1 1 1 1 

rial system. 
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Fig. 2. A system regenerative cycle for a two-stage system. 
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We consider now Echelon j = 2 , . . . , N. Similar to the above, we

consider one replenishment cycle of length T j that starts at time 0

when Stage j orders from Stage j + 1 , raising the echelon IP to S j .

The shipment from Stage j + 1 arrives at time l j and Stage j − 1 is

scheduled to order from Stage j to raise the echelon IP to S j−1 at

time τ jq = l j + qT j−1 for q = 0 , . . . , n j − 1 . 

Fig. 2 illustrates a regenerative replenishment cycle for a two-

stage serial system with T 2 = 3 T 1 . We let Stage 2 order at time 0,

raising the echelon or system base-stock level to S 2 . Stage 2 will

then order again at time T 2 , raising the system base-stock level

to S 2 . The system regenerates at time T 2 . During this system re-

plenishment cycle, the stock ordered by Stage 2 from the external

supplier at time 0 will arrive after a lead time of l 2 and Stage 1

will order from Stage 2 to raise its base-stock level to S 1 (= R 1 ) at

time τ1 i = l 2 + iT 1 for i = 0 , 1 , 2 . We note that Stage 2 can make a

delivery to Stage 1 at time τ 1 i only if it does not run out of stock

before this reorder point. 

Because demand is uncertain, Stage j may run out of stock at

time τ jq . Should this happen, Stage j has no more stock to meet

any order from Stage j − 1 thereafter until receiving the next ship-

ment from Stage j + 1 at time l j + T j . To define the stocking condi-

tions at Stage j , we let Y jq −1 = D [0 , τ jq −1 ) and X jq = D [ τ jq −1 , τ jq )

denote the cumulative demand in the intervals [0 , τ jq −1 ) and

[ τ jq −1 , τ jq ) respectively, for q = 0 , . . . , n j − 1 , where τ j0 −1 ≡ 0 and

 j0 −1 ≡ 0 . Since the order-up-to policy requires that Stage j − 1 or-

der the exact stock to replace the demand X jq at time τ jq , the to-

tal order quantity from Stage j − 1 since time τ j 0 until time τ jq 

is equal to Y jq and the remaining stock at Stage j at time τ jq af-

ter meeting the order from Stage j − 1 is equal to R j − Y jq or zero,

whichever is larger. This means that Stage j runs out of stock at

time τ jq if (i) X jq ≥ R j for q = 0 , (ii) Y jq −1 < R j and X jq ≥ R j − Y jq −1

for q = 1 , . . . .n j − 1 and (iii) Y jq −1 < R j for q = n j . We note that

these events are mutually exclusive and collectively exhaustive and

the case for q = n j represents the event where Stage j does not run

out of stock in the replenishment cycle. 

We evaluate π j ( R j , T j | · ) by the sum of the expected inven-

tory holding cost at Stage j and the expected inventory holding and

backordering cost at Echelon j − 1 in the replenishment cycle. 

Theorem 1. Given π1 ( R 1 , T 1 ), π j ( R j , T j | · ) can be computed recur-

sively starting from j = 2 by 

π j (R j , T j |·) = h j T j 

∫ R j 

0 

� j (y ) dy + n j π j−1 (R j−1 , T j−1 |·)� j (R j ) 

+ n j 

∫ ∞ 

R j 

π j−1 (R j−1 + R j − y, T j−1 |·) φ j (y ) dy (3)

where φ j (y ) = 

∑ n j −1 

q =0 
g(y, τ jq ) /n j and � j (y ) = 

∫ y 
0 

φ j (x ) dx . 
roof. Following the discussions above, we assume that Stage j or-

ers at time 0, raising the echelon IP to S j , and evaluate the ex-

ected cost at Stage j in the interval [ l j , l j + T j ) and the expected

ost at Echelon j − 1 in the interval [ l j−1 + l j , l j−1 + l j + T j ) . 

Since Stage j holds a stock that is equal to R j − Y jq or zero,

hichever is larger, in the interval [ τ jq , τ jq +1 ) for q = 0 , . . . , n j − 1 ,

he cumulative expected inventory holding cost at Stage j in the

nterval [ l j , l j + T j ) is given by h j T j−1 

∑ n j −1 

q =0 

∫ R j 
0 

(R j − y ) g(y, τ jq ) dy =
 j T j 

∫ R j 
0 

� j (y ) dy . 

The remaining task is to evaluate the expected cost at Eche-

on j − 1 . We let c m 

q (·) denote the expected cost at Echelon j − 1

n the interval [ l j−1 + τ jq , l j−1 + τ jq +1 ) given that Stage j runs out

f stock at time τ jm 

for m = 0 , . . . , n j and q = 0 , . . . , n j − 1 . By

his definition, 
∑ n j 

m =0 
c m 

q (·) is the expected cost at Echelon j −
 in the interval [ l j−1 + τ jq , l j−1 + τ jq +1 ) for q = 0 , . . . , n j − 1 and
 n j −1 

q =0 

∑ n j 
m =0 

c m 

q (·) is the expected cost at Echelon j − 1 in the in-

erval [ l j−1 + l j , l j−1 + l j + T j ) . 

We break the summation 

∑ n j 
m =0 

c m 

q (·) at m = q and obtain 

 j −1 ∑ 

q =0 

n j ∑ 

m =0 

c m 

q (·) = 

n j −1 ∑ 

q =0 

q ∑ 

m =0 

c m 

q (·) + 

n j −1 ∑ 

q =0 

n j ∑ 

m = q +1 

c m 

q (·) . (4)

According to the definition above, 
∑ n j 

m = q +1 
c m 

q (·) is the ex-

ected cost at Echelon j − 1 in the interval [ l j−1 + τ jq , l j−1 + τ jq +1 )

iven that Stage j runs out of stock at time τ jm 

for m = q +
 , . . . , n j , or equivalently after time τ jq . This event happens if and

nly if Y jq < R j . Under this condition, Stage j has sufficient stock

o raise the IP at Echelon j − 1 to S j−1 at time τ jq and the ex-

ected cost at Echelon j − 1 in the interval [ l j−1 + τ jq , l j−1 + τ jq +1 )

s then equal to π j−1 (R j−1 , T j−1 |·) . This leads to 
∑ n j 

m = q +1 
c m 

q (·) =
 R j 
0 

π j−1 (R j−1 , T j−1 |·) g(y, τ jq ) dy = π j−1 (R j−1 , T j−1 |·) G (R j , τ jq ) since

 jq is independent of the demand after time τ jq and 

 j −1 ∑ 

q =0 

n j ∑ 

m = q +1 

c m 

q (·) = π j−1 (R j−1 , T j−1 |·) 
n j −1 ∑ 

q =0 

G (R j , τ jq ) . (5)

On the other hand, 
∑ q 

m =0 
c m 

jq 
(·) is the expected cost at Echelon

j − 1 in the interval [ l j−1 + τ jq , l j−1 + τ jq +1 ) given that Stage j runs

ut of stock at time τ jm 

for m = 0 , . . . , q, or equivalently before

r at time τ jq . This event happens if and only if Y jq ≥ R j . Under

his condition, all stock available at Stage j has been shipped to

tage j − 1 by time τ jq . The IP at Echelon j − 1 at time τ jq after

eceiving the shipment from Stage j (if any) is equal to S j−1 + R j −
 given Y jq = y ≥ R j . This yields 

∑ q 
m =0 

c m 

q (·) = 

∫ ∞ 

R j 
π j−1 (R j + R j−1 −
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, T j−1 |·) g(y, τ jq ) dy and 

 j −1 ∑ 

q =0 

q ∑ 

m =0 

c m 

q (·) = 

∫ ∞ 

R j 

π j−1 (R j + R j−1 − y, T j−1 |·) 
n j −1 ∑ 

q =0 

g(y, τ jq ) dy. 

(6) 

Adding (5), (6) and the expected inventory holding cost at Stage

 together yields (3). �

Alternatively, to facilitate computation, we can evaluate (6) by 

 j −1 ∑ 

q =0 

q ∑ 

m =0 

c m 

q (·) = ˜ π j−1 (R j + R j−1 , T j |·) 

−
∫ R j 

0 

π j−1 (R j + R j−1 − y, T j−1 |·) 
n j −1 ∑ 

q =0 

g(y, τ jq ) dy (7) 

here ˜ π j−1 (R j + R j−1 , T j |·) is equal to π j−1 (R j + R j−1 , T j |·) with

eadtime l j−1 + l j . 

We place the derivation of (7) in Appendix A for simplicity of

resentation. 

Assume that Stage j + 1 is perfectly reliable. Then the expected

nventory holding and backordering cost per unit time at Echelon j

s equal to C j (R j , T j |·) = π j (R j , T j |·) /T j for j = 1 , . . . , N. 

Theorem 1 provides a simple cost evaluation for a general se-

ial inventory system that is easy to follow and compute. Several

oints about this cost evaluation are worth noting. 

First, if demand is discrete, we need only to change the integra-

ions with respect to demand into summations accordingly for the

bove evaluations. 

Second, if costs are accounted discretely at m time points at

ime l 1 ≤ t i ≤ l 1 + T 1 in the interval [ l 1 , l 1 + T 1 ) for i = 1 , . . . , m, we

an evaluate the expected average inventory holding and backo-

dering cost at Stage 1 in the interval [ l 1 , l 1 + T 1 ) according to

1 (R 1 , T 1 ) = 

∑ m 

i =1 u (t i ) /m, where u ( t i ) is given by (2). All other

valuations still hold. 

Third, the expected inventory in-transit from Stage j + 1 to

tage j is equal to λl j per unit time. The cost for holding this ex-

ected inventory is constant and thus omitted. 

Finally, π1 (R 1 , T 1 ) = b[ λ(T 1 / 2 + l 1 ) − R 1 ] T 1 > π1 (0 , T 1 ) for any

 1 < 0 and, if R j < 0 for any j > 0, we can redefine the base stock

evel at Stage j to be zero and the base stock level at the down-

tream Stage j − 1 to be R j−1 + R j without affecting the system

ost. Consequently, we need to consider only R j ≥ 0 for j = 1 , . . . , N

n the optimization analysis below. 

. Optimal ordering policy 

We discuss in this section the optimal ordering policy for a

iven replenishment schedule or the ordering policy R N that mini-

izes C N ( R N , T N | · ) given the replenishment schedule T N . 

emma 2. Assume R j > 0 for j = 1 , . . . N. Then 

∂C N (R N , T N |·) 
∂R j 

− ∂C N (R N , T N |·) 
∂R j+1 

= [ 
∂C j (R j , T j |·) 

∂R j 

− h j+1 ] P 
N 
j (R N |·) 

(8) 

or j = 1 , . . . , N − 1 where P N 
j 
(R N |·) is a function of R N . 

roof. For simplicity of presentation, we place the proof of

emma 2 in Appendix B. �

The finding in Lemma 2 leads to a simple characterization of an

ptimal ordering policy. 

heorem 2. For a given system replenishment schedule T N , an opti-

al ordering policy that minimizes C N ( R N , T N | · ) is uniquely deter-

ined by the following bottom-up procedure. 
(i) Start with Stage 1. Identify R ∗1 by ∂C 1 (R 1 , T 1 ) /∂R 1 = h 2 and

roceed to step (ii) below. 

(ii) For Stage j > 1, given R ∗
1 
, ..., R ∗

j−1 
that are previously iden-

ified, identify the optimal R ∗
j 

by ∂C j (R j , T j |·) /∂R j = h j+1 . If the ob-

ained solution is R ∗
j 
= 0 , then Stage j is a virtual stage that does not

arry any stock and Stage j − 1 orders directly from Stage j + 1 . Re-

ise R ∗
j−1 

by ∂ C j−1 (R j−1 , T j−1 |·) /∂ R j−1 = h j+1 with reorder interval T j 
nd lead time l j + l j−1 . Repeat this step until Stage N with h N+1 = 0 . 

roof. We consider the necessary conditions of optimality, i.e.,

C N (R N , T N |·) /∂R j = 0 for j = 1 , . . . , N. Using Lemma 2 , it is easy

o verify that these necessary conditions are equivalent to

C j (R j , T j |·) /∂R j = h j+1 for j = 1 , . . . , N with h N+1 = 0 . A solution

f these conditions can be obtained using the bottom-up proce-

ure in the theorem. 

We prove below that this solution is unique and provides a

inimum optimal solution. To this end, we obtain the second

erivatives of C j ( R j , T j | · ) w.r.t R j and R i for i = 1 , . . . , j − 1 : 

∂ 2 C j (R j , T j |·) 
∂R 

2 
j 

= [ h j −
∂C j−1 (R j−1 , T j−1 |·) 

∂R j−1 

] φ j (R j ) 

+ 

∫ ∞ 

R j 

∂ 2 C j−1 (R j + R j−1 − y, T j−1 |·) 
∂R 

2 
j−1 

φ j (y ) dy, (9) 

∂ 2 C j (R j , T j |·) 
∂ R j ∂ R i 

= 

n j −1 ∑ 

q =0 

∫ ∞ 

R j 

∂ 2 C j−1 (R j + R j−1 − y, T j−1 |·) 
∂ R j ∂ R i 

φ j (y ) dy and

(10) 

∂ 2 C j (R j , T j |·) 
∂R 

2 
i 

= 

∂ 2 C j−1 (R j−1 , T j−1 |·) 
∂R 

2 
i 

� j (R j ) 

+ 

∫ ∞ 

R j 

∂ 2 C j−1 (R j + R j−1 − y, T j−1 |·) 
∂R 

2 
i 

φ j (y ) dy. (11) 

It is easy to verify that C 1 ( R 1 , T 1 ) is convex in R 1 and R ∗
1 

pro-

ides a unique minimum solution. 

Given R 1 = R ∗
1 
, we apply the conditions: h 2 − ∂ C 1 (R 1 , T 1 ) /∂ R 1 =

 and ∂ 2 C 1 (R 1 , T 1 ) /∂R 2 
1 

≥ 0 in (9), (10) and (11), respectively, for

j = 2 and obtain ∂ 2 C 2 ( R 2 , T 2 | · )/ ∂ R i ∂ R q ≥ 0 for i, q = 1 , 2 . This

eans that C 2 ( R 2 , T 2 | · ) is convex in R 2 and super-modular in R 1 
nd R 2 . Therefore, if R ∗

2 
> 0 , R ∗

2 
provides a unique minimum solu-

ion. If R ∗2 = 0 , the necessary condition for Stage 1 is no longer ap-

licable since Stage 1 orders directly from Stage 3 with lead time

 2 + l 1 and we have to revise R ∗
1 

accordingly. 

Similarly, for each Stage j > 2, given R ∗1 , ...., R 
∗
j−1 

, the same results

an be obtained. Consequently, R ∗
j 

provides a unique minimum op-

imal solution. �

According to Theorem 2 , under an optimal solution, the

arginal cost at an echelon is equal to the inventory holding cost

t the upstream stage. This is intuitive. Consider a unit of stock

t Stage j at a review point of Stage j − 1 and the decision be-

ween retaining it at Stage j or shipping it to the downstream Ech-

lon j − 1 . The marginal cost of the first option is the holding cost

 j . Apparently, this unit of stock should be shipped to the down-

tream Echelon j − 1 if the marginal cost at Echelon j − 1 is lower

han h j . Following this intuition, an optimal inventory position (or

rder-up-to level) at the downstream Stage j − 1 is reached when

he two marginal costs are equal. This finding provides a simple

haracterization of an optimal ordering policy for a serial inven-

ory system. Under this decision rule, an optimal base stock level

t a stage is determined independently of the base stock levels and

eorder intervals at the upstream stages. This independence condi-

ion leads to the bottom-up solution procedure in Theorem 2 . 



6 Q. Wang and G. Wan / Computers and Operations Research 118 (2020) 104902 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

c  

s

 

4  

v  

t  

r  

c  

i  

p  

t  

v  

t  

d  

m  

u

 

m  

w  

T  

e  

c  

t  

s  

fi  

t  

P  

o  

i

 

d

a  

i  

o  

a  

c  

b  

v  

o  

d  

a  

c  

d  

m  

f  
5. Effect of cost accounting methods 

We examine the effects of applying discrete-time cost account-

ing methods when inventory holding and backordering costs ac-

tually accrue continuously in time in this section. We address

three issues: (1) how significant is the effect of end-of-period cost

accounting for single-stage systems, (2) how the inefficiency of

end-of-period cost accounting carries over to multiple-stage sys-

tems, and (3) whether extending end-of-period cost accounting to

discrete-time cost accounting that evaluates inventory related costs

at multiple discrete points in a reorder interval provides any ad-

vantage as compared to the continuous-time solution we develop

in this study. 

Regardless of the cost accounting method, the same demand

and continuous-time cost parameters are used. For a given replen-

ishment schedule T = { T 1 , . . . , T N } , we let R 

∗(T ) = (R ∗
1 
(T ) , . . . R ∗

N 
(T ))

denote the optimal ordering policy R that minimizes the system

cost C N ( R N , T N | · ). The minimum system cost is then given by

 N (R ∗
N 
, T N |·) . We use C N (R ∗

N 
(T )) , T N |·) as the benchmark to evaluate

the cost inefficiency of a discrete-time cost accounting method. 

5.1. Effect of end-of-period cost accounting for single-Stage systems 

We start with single-stage systems. There are two reasons. First,

a single-stage system is equivalent to the newsvendor model that

is widely used in the literature. Second, the effect of cost ac-

counting on Stage 1 is of primary importance in analyzing the

effect of cost accounting on multiple-stage systems since cost

accounting method affects directly only the cost evaluation at

Stage 1. We consider end-of-period cost accounting. In contrast to

Rudi et al. (2009) , we first illustrate numerically the significance of

the excess stock and cost inefficiency caused by end-of-period cost

accounting and subsequently prove that they are bounded below

by the ratio of the inventory holding cost to the backordering cost

asymptotically as the reorder interval increases. 

We use the same notation above with a superscript “e ” to dif-

ferentiate end-of-period cost accounting. According to Lemma 1,

when end-of-period cost accounting is used, the expected inven-

tory holding and backordering cost at Stage 1 in a reorder in-

terval is evaluated by π e 
1 
(R 1 , T 1 ) = u (R 1 , l 1 + T 1 ) T 1 and hence the

average cost per unit time is equal to C e 
1 
(R 1 , T 1 ) = u (R 1 , l 1 + T 1 ) .

Let R e 
1 
(T 1 ) denote the base stock R 1 that minimizes C e 

1 
(R 1 , T 1 )

for a given T 1 . When this base stock level is implemented, the

actual average cost per unit time is equal to C 1 (R e 
1 
(T 1 ) , T 1 ) . We

assess the stock increase and cost inefficiency caused by end-

of-period cost accounting by �1 = R e (T 1 ) /R ∗ (T 1 ) − 1 and �1 =

S 1 1 C 

Table 1 

Results for single-stage system. 

Cases Deviation(%) Mean Std Min Max 

All �1 
C 20.29 24.49 0 95.92 

�1 
S 20.30 27.28 0 125.00 

h 1 / b 1 �1 
C 36.26 34.96 0 95.92 

�1 
S 31.79 37.57 0 125.00 

0.1 �1 
C 15.57 13.25 0 36.05 

�1 
S 17.97 21.10 0 100.00 

0.01 �1 
C 9.77 8.27 0 21.67 

�1 
S 11.68 14.91 0 100.00 

T 1 0.1 �1 
C 0.34 1.77 0 12.04 

�1 
S 1.77 7.58 0 50.00 

2.1 �1 
C 19.03 17.82 0 76.99 

�1 22.06 28.07 0 125.00 

4.1 �1 
C 28.62 25.65 0 84.58 

�1 
S 26.31 29.11 0 125.00 

6.1 �1 
C 33.18 28.58 0 95.92 

�1 
S 31.02 28.70 0 116.67 
 1 (R e 
1 
(T 1 ) , T 1 ) /C 1 (R ∗1 (T 1 ) , T 1 ) − 1 respectively. It is noted that the

ost inefficiency �1 
C is completely determined by the optimal base

tock levels R e 
1 
(T 1 ) and R ∗

1 
(T 1 ) . 

We conduct a numerical experiment with λ, T 1 , l 1 ∈ {0.1, 2.1,

.1, 6.1} and h 1 / b ∈ {0.01, 0.1, 1} with h 1 = 1 . We choose different

alues for these system parameters to investigate their impact on

he effect of different cost accounting methods. We consider the

atio h 1 / b in the investigation because we found that the effect of

ost accounting method depends on the ratio h 1 / b rather than the

ndividual values of h 1 and b (see Theorem 3 and its proof in Ap-

endix C). The experiment contains 192 different cases. In view of

he literature, where most studies on stochastic periodic-review in-

entory control policies assumed Poisson demand, we also adopted

his demand model to facilitate comparison. Our analysis holds un-

er the discrete Possion demand model when aggregation over de-

and are modified from integration to summation in the cost eval-

ations. The conditions of optimality are modified accordingly. 

Table 1 summarizes the statistics for the 192 cases in the nu-

erical study. Overall, system cost increases by 20.29% on average

ith a standard deviation of 24.49%, ranging from 0.00% to 95.92%.

he numerical study provides strong evidence against the use of

nd-of-period cost accounting. In addition, Fig. 3 shows that the

ost inefficiency increases with the demand rate λ, the reorder in-

erval T 1 and the ratio h 1 / b but decreases with the leadtime l 1 . A

crutiny of the individual cases reveals further that the cost inef-

ciency increases with λT 1 starting from zero for small λT 1 . Since

he variance of the demand in the reorder interval is λT 1 under the

oisson demand model, this means that the effect of end-of-period

f cost accounting depends on the demand variation in the reorder

nterval. Excess stock exhibits a similar pattern. 

This is reasonable. Under fixed-interval ordering, stock is or-

ered at a reorder point to meet the demand in the leadtime l 1 
nd the reorder interval T 1 . When continuous-time cost accounting

s used, the optimal base stock level R ∗1 (T 1 ) is determined based

n the average inventory level in the reorder interval that is evalu-

ted continuously in time. In contrast, when end-of-period cost ac-

ounting is used, the optimal base stock level R e 
1 
(T 1 ) is determined

ased on the inventory level only at the end of the reorder inter-

al. Because inventory on hand decreases and backorder increases

ver time, the inventory level at the end of a reorder interval un-

erestimates the average inventory on hand and overestimates the

verage backorder in the period. As a result, end-of-period cost ac-

ounting entails an excess stock, i.e. R e 
1 
(T 1 ) ≥ R ∗

1 
(T 1 ) . Obviously, the

ifference between the two base stock levels depends on the de-

and deviation in the reorder interval. More specifically, the dif-

erence is zero if demand does not change within the reorder in-
Cases Deviation(%) Mean Std Min Max 

λ 0.1 �1 
C 2.12 6.50 0 36.05 

�1 
S 9.42 26.68 0 100.00 

2.1 �1 
C 22.18 21.64 0 84.58 

�1 
S 25.36 28.80 0 125.00 

4.1 �1 
C 27.16 25.73 0 86.27 

�1 
S 23.92 27.84 0 125.00 

6.1 �1 
C 29.06 28.10 0 95.92 

�1 
S 22.12 23.42 0 100.00 

l 1 0.1 �1 
C 26.04 29.26 0 95.92 

�1 
S 38.21 41.53 0 125.00 

2.1 �1 
C 20.93 24.87 0 89.45 

�1 
S 19.92 22.83 0 100.00 

4.1 �1 
C 18.27 22.43 0 83.44 

�1 
S 12.77 13.13 0 44.83 

6.1 �1 
C 15.99 20.18 0 77.86 

�1 
S 10.52 11.60 0 50.00 
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Fig. 3. Effect of system parameters on the inefficiency by end-of-period cost accounting. 
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Table 2 

Cost inefficiency and excess stock for systems with different number of stages. 

No. of Stages Deviation Mean Std Min Max 

N = 1 �1 
C (%) 19.85 22.54 0 76.99 

�1 
S (%) 30.92 38.46 0 125.00 

N = 2 �2 
C (%) 11.08 15.02 0 69.98 

�2 
S (%) 17.21 25.06 0 150.00 

N = 3 �3 
C (%) 6.64 9.86 0 78.30 

�3 
S (%) 9.62 15.03 0 150.00 
erval and would become larger as the demand deviation in the

eorder interval increases. This is what we observed in the nu-

erical study. In addition, because the demand variation in the re-

rder interval T 1 relative to the demand variation in the whole pe-

iod l 1 + T 1 decreases as the leadtime l 1 increases, the excess stock

ould decrease with l 1 . Finally, the excess stock would be higher

or a higher inventory holding cost h 1 and/or a lower backordering

ost b . It is easy to verify that both �1 
S 

and �1 
c depend on the ra-

io h 1 / b rather than their individual values. Theorem 3 proves that

oth the excess stock and cost inefficiency caused by end-of-period

ost accounting are bounded below by the ratio h 1 / b asymptoti-

ally as the reorder interval T 1 increases when demand follows the

rownian motion model with Normal density. 

heorem 3. Let demand follow the Brownian motion model with

ormal density ( Rao, 2003 ): 

(x, t) = 

1 

σ
√ 

2 πt 
exp[ − (x − λt) 2 

2 σ 2 t 
] . (12)

hen �1 
S 

and �1 
C 

are bounded below by the ratio h 1 / b asymptoti-

ally as the reorder interval T 1 increases. i.e., lim T 1 →∞ 

�1 
S ≥ h 1 /b and

im T 1 →∞ 

�1 
C 

≥ h 1 /b. 

roof. We place the proof of the theorem in Appendix C. �

.2. Effect of end-of-period cost accounting for multiple-Stage 

ystems 

Our second task is to investigate how the cost inefficiency of

nd-of-period cost accounting at Stage 1 carries over to multiple-

tage serial systems. 

For this purpose, we conducted a numerical study that ex-

ended single-stage systems to two-stage systems and subse-

uently two-stage systems to three-stage systems. Due to com-

utational considerations, we selected 16 single-stage systems for
∈ {2.1, 4.1}, T 1 , l 1 ∈ {0.1, 2.1} and b ∈ {1, 10} with h 1 = 1 from the

xperiment above. First, we extended the 16 cases to two-stage se-

ial systems with n 2 ∈ {1, 3}, l 2 ∈ {0.1, 2.1} and h 1 − h 2 ∈ { 0 . 1 , 0 . 3 }
nd evaluated the excess stock and system cost increases. This nu-

erical study contains 128 different cases. Subsequently we ex-

ended the 128 two-stage serial systems to three-stage serial sys-

ems with n 3 ∈ {1, 3}, l 3 ∈ {0.1, 2.1} and h 2 − h 3 ∈ { 0 . 1 , 0 . 3 } . This

umerical study contains 1024 different cases. 

We extended the notation and evaluation above from single-

tage systems to multiple-stage systems. Specifically, given
e 
1 
(R 1 , T 1 ) , we evaluate π e 

j 
(R j , T j |·) according to Theorem 1 for j =

 , . . . , N and C e 
N 
(R N , T N |·) = π e 

N 
(R N , T N |·) /T N . Similar to the above,

e let R 

e (T ) = (R e 
1 
(T ) , . . . R e 

N 
(T )) denote the ordering policy R

hat minimizes C e 
N 
(R N , T N |·) for a given replenishment schedule

 . When this ordering policy is implemented, the actual system

ost is C N (R e 
N 
(T ) , T N |·) . We use �N 

S 
= 

∑ N 
j=1 R 

e 
j 
(T ) / 

∑ N 
j=1 R 

∗
j 
(T ) − 1

nd �N 
C 

= C N (R e 
N 
(T ) , T N |·) /C N (R ∗

N 
(T ) , T N |·) − 1 to evaluate the sys-

em excess stock and cost inefficiency caused by end-of-period cost

ccounting for an N -stage serial system respectively. 

Table 2 summarizes the statistics from the numerical experi-

ent. 
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Table 3 

Base planning interval and approximation accuracy. 

Cases 

T 1 = 2 . 1 , b = 1 T 1 = 2 . 1 , b = 10 T 1 = 4 . 1 , b = 1 T 1 = 4 . 1 , b = 10 

�C (%) Time(s) �C (%) Time(s) �C (%) Time(s) �C (%) Time(s) 

Continuous 1 0.049 1 0.058 1 0.017 1 0.043 

m 

1 17.887 0.053 12.100 0.052 41.046 0.022 22.321 0.052 

2 6.318 0.037 4.463 0.056 13.899 0.023 7.884 0.048 

3 0.739 0.038 0.740 0.052 5.325 0.026 2.642 0.053 

4 0.739 0.035 0.118 0.061 0.694 0.023 2.642 0.056 

5 0.314 0.040 0.118 0.063 0.694 0.023 2.642 0.059 

6 0.314 0.042 0.118 0.064 0.694 0.025 0.650 0.048 

7 0.314 0.038 0.118 0.064 0.614 0.029 0.650 0.048 

8 0.314 0.047 0.118 0.065 0.614 0.031 0.000 0.078 

9 0.314 0.048 0.118 0.071 0.614 0.032 0.000 0.075 

10 0.314 0.047 0.118 0.073 0.614 0.035 0.000 0.071 
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According to Table 2 , on average, system stock and system cost

caused by end-of-period cost accounting increase respectively by

30.92% and 19.85% for the 16 single-stage systems; 17.21% and

11.08% for the 128 two-stage systems; and 9.62% and 6.62% for

the 1024 three-stage systems. This shows that both excess stock

and cost inefficiency decrease as the supply chain becomes longer.

This is because cost accounting method affects only the cost evalu-

ation at Stage 1 and therefore the carry-over effect on upperstream

stages will diminish as the number of stage increases. Neverthe-

less, a supply chain in reality has typically only a few stages. Ac-

cording to our numerical studies, the effect of end-of-period cost

accounting is still quite significant for three-stage serial inventory

systems. 

5.3. Approximation by discrete-time cost accounting 

Finally, we note that, to alleviate the problem of end-of-period

cost accounting, previous studies have used discrete-time cost ac-

counting that evaluates inventory related costs at multiple discrete

time points in each reorder interval at Stage 1 ( Chao and Zhou,

2009; Shang and Zhou, 2010 ). These studies assumed that a base

planning interval (typically normalized to length 1) has been cho-

sen exogenously and all reorder intervals and lead times are inte-
Fig. 4. Effect of base planning interv
er multiples of the base planning interval. Inventory related costs

re evaluated based on the inventory levels at the end of each base

lanning interval rather than only at the end of a reorder interval

t Stage 1. 

This discrete-time cost accounting method provides an approx-

mation to the continuous-time solution we develop in this study.

ccording to our analysis above, this approximation improves end-

f-period cost accounting and can achieve any level of accuracy

y reducing the length of the base planning interval. In particular,

his approximation can be 100% accurate if the demand variation

n the base planning interval is sufficiently small. Consequently,

n comparison to the continuous-time solution, the applicability of

iscrete-time cost accounting depends on whether an appropriate

ase planning period can be easily identified and the computa-

ional requirement for the identification. 

We make two observations from our extensive numerical stud-

es. 

First, as compared to continuous-time cost accounting, end-of-

eriod cost accounting requires less computation but its compu-

ational advantage diminishes as the number of stages increases.

or the numerical experiment in Section 5.2 , the average compu-

ational times for the optimal solutions under end-of-period cost

ccounting and continuous-time cost accounting are 0.0029 and
al on approximation accuracy. 
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.0106 seconds respectively for the 16 single-stage cases; 0.0193

nd 0.0179s respectively for the 128 two-stage cases and 4.0984

nd 4.7559s respectively for the 1024 three-stage cases. 

Second, we consider discrete-time cost accounting and assess

he impact of the base planning interval on cost deviation and the

equired computational time. We divide the reorder interval T 1 at

tage 1 into m equally spaced base planning intervals of length

 1 / m , where m is a positive integer. According to Lemma 1, the

nventory related cost at Stage 1 in a reorder interval is evalu-

ted by π1 (R 1 , T 1 ) = 

∑ m 

i =1 u (R 1 , l 1 + iT 1 /m ) T 1 /m . Given π1 ( R 1 , T 1 ),

he rest of the analyses is the same to the case for end-of-period

ost accounting above. Apparently, both approximation accuracy

nd computational requirement increase with m . 

Our numerical experiment shows that the length of the base

lanning interval to achieve a 2% accuracy is case specific and the

equired computational time to achieve an approximation accuracy

f 2% is in general comparative to that for the optimal solution un-

er continuous-time cost accounting. For illustration purpose, we

resent the results in Table 3 for 4 three-stage systems, where

= 2 . 1 , l 1 = l 2 = l 3 = 2 . 1 , T 1 ∈ {2.1, 4.1}, b ∈ {1, 10}, n 2 = n 3 = 1 ,

 1 = 1 , h 2 = 0 . 7 and h 3 = 0 . 4 . The computational time for the op-

imal solution under continuous-time cost accounting is presented

n the first row. The cost inefficiency and computational time for

he optimal solution under discrete-time cost accounting are pre-

ented below for m = 1 , 2 , . . . , 6 . As demonstrated in Fig. 4 , the m

hat achieves a cost inefficiency of less than 2% is 3, 3, 4 and 6

or the four cases respectively. The computational time to achieve

his accuracy is slightly smaller in the first two cases but slightly

reater in the last two cases than the computational time for the

espective optimal solution under continuous-time cost accounting.

n general, our numerical studies show that discrete-time cost ac-

ounting does not provide a modeling and computational advan-

age as compared to continuous-time cost accounting. 

. Concluding remarks 

This paper considers serial inventory control systems where

nventory holding and backordering costs accrue continuously in

ime and investigates the impact of cost accounting methods on

ystem stock and cost. We assume that the system adopts fixed-

nterval ordering and provide a bottom-up recursive approach to

valuate system cost and optimize the inventory control policy.

e also prove that a unique optimal ordering policy is determined

y simply equating the marginal echelon inventory related cost to

he inventory holding cost at the upstream stage. Subsequently, we

valuate the effect of using discrete-time cost accounting methods

o approximate the inventory control system numerically. 

Our analysis shows that the adoption of end-of-period cost ac-

ounting method in a serial inventory system leads to excess stock

nd higher system cost as compared to the optimal solution un-

er continuous-time cost accounting. Because end-of-period cost

ccounting ignores the demand variation in the reorder interval

t the most downstream stage (i.e. Stage 1), we found that the

ost inefficiency of end-of-period cost accounting increases with

his demand variation. Moreover, since cost accounting method

ffects only the cost evaluation at Stage 1, the effect of end-

f-period cost accounting on system cost will diminish as the

umber of stages increases. Nevertheless, our numerical studies

how that the cost inefficiency is still quite significant for a typ-

cal serial inventory system. Our findings also show that, given

he exact continuous-time cost accounting solution that is de-

eloped in the current study, discrete-time cost accounting gen-

rally does not provide any modelling and/or computational ad-

antage. Given the wide adoption of end-of-period cost account-

ng, we believe that our study provides important insights for

ractitioners. 
Future research may generalize the current study in two pos-

ible directions. First, since we assume that the system replenish-

ent schedule is exogenously determined, a meaningful extension

s to relax this assumption and investigate the impact of differ-

nt cost accounting methods on the reorder intervals and base-

tock levels. One conjecture is that end-of-period cost acconnting

ay entail a shorter reorder interval at Stage 1 so as to reduce

he demand variation in the reorder interval and hence reduce the

ost inefficiency caused by this demand variation. Another possi-

le direction is to extend the current study to multi-echelon in-

entory systems with multiple retailers such as one-warehouse

ulti-retailer systems and assembly systems. We conjecture that

he observations we make in this study hold for other more gen-

ral multi-echelon systems. Nevertheless, the evaluation and opti-

ization of such systems will be a challenge. 

cknowledgement 

This work was supported by the National Natural Science

oundation of China [Grant No. 71802076 , 71972182 , 71671061 ,

1573281 ] and the Natural Science Foundation of Hunan Province

Grant No. 2019JJ50070 ]. 

ppendix A. Derivation of (7) 

Changing the integration in (6) according to 
∫ ∞ 

R j 
= 

∫ ∞ 

0 − ∫ R j 
0 

, we

btain 

 j −1 ∑ 

q =0 

q ∑ 

m =0 

c m 

q (·) = 

n j −1 ∑ 

q =0 

∫ ∞ 

0 

π j−1 (R j + R j−1 − y, T j−1 |·) g(y, τ jq ) dy 

−
n j −1 ∑ 

q =0 

∫ R j 

0 

π j−1 (R j + R j−1 − y, T j−1 |·) g(y, τ jq ) dy ) .

(A.1)

Suppose that Stage j − 1 orders directly from Stage j + 1 at

ime 0, raising the IP at Echelon j − 1 to S j . Leadtime is l j−1 + l j 
nd no other order will be made before time T j . By definition,

he expected cost at Echelon j − 1 in the interval [ l j−1 + l j , l j−1 +
 j + T j ) is given by ˜ π j−1 (R j + R j−1 , T j |·) in this case. Moreover,

iven Y jq = y, the IP at Echelon j − 1 is equal to S j − y at time

jq and the expected cost at Echelon j − 1 in the interval [ l j−1 +
jq , l j−1 + τ jq +1 ) is then given by π j−1 (R j + R j−1 − y, T j−1 |·) . Given

his conditional cost evaluation, the expected cost at Echelon j − 1

n the interval [ l j−1 + τ jq , l j−1 + τ jq +1 ) is equal to 
∫ ∞ 

0 π j−1 (R j +
 j−1 − y, T j−1 |·) g(y, τ jq ) dy and the sum of this expected cost over

 = 0 , . . . , n j − 1 is the expected cost in the interval [ l j−1 + l j , l j−1 +
 j + T j ) , which is ˜ π j−1 (R j + R j−1 , T j |·) . This leads to (7) . 

ppendix B. Proof of Lemma 2 

We differentiate C N ( R N , T N | · ) with respect to R j for j = 1 , . . . , N

nd obtain 

∂C N (R N |·) 
∂R N 

= h N �
N (R N ) 

+ 

∫ ∞ 

R N 

∂C N−1 (R N + R N−1 − y |·) 
∂R N 

φN (y ) dy and (B.1) 

∂C N (R N |·) 
∂R j 

= 

∂C N−1 (R N−1 |·) 
∂R j 

�N (R N ) 

+ 

∫ ∞ 

R N 

∂C N−1 (R N + R N−1 − y |·) 
∂R j 

φN (y ) dy for j < N 

(B.2) 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004735
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For brevity, we keep only the base-stock level for the most up-

stream stage in the relevant functions. 

Using (B.1) and (B.2) , we obtain 

∂C N (R N |·) 
∂R N−1 

− ∂C N (R N |·) 
∂R N 

= [ 
∂C N−1 (R N−1 |·) 

∂R N−1 

− h N ]�
N (R N ) (B.3)

since ∂C N−1 (R N + R N−1 − y |·) /∂R N = ∂C N−1 (R N + R N−1 − y |·) /∂R N−1 

for any y ≥ 0 and 

∂C N (R N |·) 
∂R j 

− ∂C N (R N |·) 
∂R j+1 

= [ 
∂C N−1 (R N−1 |·) 

∂R j 

− ∂C N−1 (R N−1 |·) 
∂R j+1 

]�N (R N )

+ 

∫ ∞ 

R N 

[ 
∂C N−1 (R N + R N−1 − y |·) 

∂R j 

−∂C N−1 (R N + R N−1 − y |·) 
∂R j+1 

] φN (y ) dy for j < N. (B.4)

We prove the relationship in Lemma 2 using induction with re-

spect to N . 

First, for N = 2 , the relationship holds according to (B.3) . 

Second, for any N > 2, we assume that the relationship holds

for C N−1 (R N−1 |·) or specifically 

∂C N−1 (R N−1 |·) 
∂R j 

− ∂C N−1 (R N−1 |·) 
∂R j+1 

= [ 
∂C j (R j |·) 

∂R j 

− h j+1 ] P 
N−1 
j 

(R N−1 |·) for j < N − 1 (B.5)

where P N−1 
j 

(R N−1 |·) is a function of R 1 , . . . , R N−1 . 

Finally, for C N ( R N | · ), the relationship holds for j = N − 1 ac-

cording to (B.3) and can be proved for j < N − 1 by applying

(B.5) in (B.4) : 

∂C N (R N |·) 
∂R j 

− ∂C N (R N |·) 
∂R j+1 

= [ 
∂C j (R j |·) 

∂R j 

− h j+1 ] P 
N−1 
j 

(R N−1 |·)�N (R N ) 

+ 

∫ ∞ 

R N 

[ 
∂C j (R j |·) 

∂R j 

− h j+1 ] P 
N−1 
j 

(R N + R N−1 − y |·) φN (y ) dy 

= [ 
∂C j (R j |·) 

∂R j 

− h j+1 ] P 
N 
j (R N |·) (B.6)

where P N 
j 
(R N |·) = P N−1 

j 
(R N−1 |·)�N (R N ) + 

∫ ∞ 

R N 
P N−1 

j 
(R N + R N−1 −

y |·) φN (y ) dy . 

Appendix C. Proof of Theorem 3 

The average cost under end-of-period cost accounting is

given by C e 
1 
(R 1 , T 1 ) = u (R 1 , l 1 + T 1 ) and R e 

1 
(T 1 ) is then deter-

mined by ∂C e 
1 
(R 1 , T 1 ) /∂R 1 = 0 or G (R e 

1 
(T 1 ) , l 1 + T 1 ) = ω, where ω =

b/ (b + h 1 ) . We use the Normal standardization G (R e 
1 
(T 1 ) , l 1 + T 1 ) =∫ [ R e 

1 
(T 1 ) −λ(l 1 + T 1 )] / (σ

√ 

l 1 + T 1 ) 
−∞ 

φ(y ) dy, where φ( y ) is the probability

density function for the standard Normal distribution, in differen-

tiating G (R e 
1 
(T 1 ) , l 1 + T 1 ) = ω w.r.t T 1 and obtain 

R 

e 
1 (T 1 ) 

′ = 

λ

2 

+ 

R 

e 
1 (T 1 ) 

2(l + T ) 
. (C.1)

lim T 1 →∞ 

μ = lim T 1 →∞ 

u (R 

e 
1 (T 1 ) , l 1 + T 1 ) + R 

e 
1 (

u (R 

∗
1 
(T 1

= lim T 1 →∞ 

u T (R 

e (T 1 ) , l 1 + T 1 ) + R 

e
1

u T (R
1 1 
Th solution of the differential equation yields R e 
1 
(T 1 ) = λ(l 1 +

 1 ) + c 
√ 

l 1 + T 1 ) and therefore R e 
1 
(T 1 ) 

′ = λ + c/ (2 
√ 

l 1 + T 1 ) , where

 is a constant. This leads to lim T 1 →∞ 

R e 
1 
(T 1 ) 

′ = λ. 

On the other hand, the average cost under continuous-

ime cost accounting is given by C 1 (R 1 , T 1 ) = 

∫ l 1 + T 1 
l 1 

u (R 1 , t ) dt 

nd therefore R ∗
1 
(T 1 ) is determined by ∂C 1 (R 1 , T 1 ) /∂R 1 = 0 or

 l 1 + T 1 
l 1 

G (R ∗
1 
(T 1 ) , t) dt = ωT 1 . Similar to the above, the differentiation

f this equation w.r.t T 1 yields 

 

∗
1 (T 1 ) 

′ = λ
ω − G (R 

∗
1 (T 1 ) , l 1 + T 1 ) 

G (R 

∗
1 
(T 1 ) , l 1 ) − G (R 

∗
1 
(T 1 ) , l 1 + T 1 ) 

. (C.2)

Using the L’Hospital’s Rule, we obtain 

 im T 1 →∞ 

R 

e 
1 (T 1 ) 

R 

∗
1 
(T 1 ) 

= 

l im T 1 →∞ 

R 

e 
1 (T 1 ) 

′ 
l im T 1 →∞ 

R 

∗
1 
(T 1 ) ′ 

= 

1 − δ

ω − δ
≥ 1 

ω 

(C.3)

ince lim T 1 →∞ 

G (R ∗
1 
(T 1 ) = 1 , where δ = lim T 1 →∞ 

G (R ∗
1 
(T 1 ) , l 1 + T 1 ) . 

This leads to lim T 1 →∞ 

�1 
S ≥ 1 /ω − 1 = h 1 /b. 

In addition, since ω = 1 / (1 + h 1 /b) , we observe from the con-

itions of optimality above that R e 
1 
(T 1 ) and R ∗

1 
(T 1 ) , and hence �1 ,

epend on only the ratio h 1 / b rather than the absolute values of

 1 and b . 

We consider now the system cost. Let μ = C 1 (R e 
1 
(T 1 ) , T 1 ) /

 1 (R ∗1 (T 1 ) , T 1 ) . We first obtain μ = 

∫ l 1 + T 1 
l 1 

[(1 + h 1 /b) 
∫ R e 

1 
(T 1 )

0 

 (x, t) dx + λt − R e 
1 
(T 1 )] dt/ 

∫ l 1 + T 1 
l 1 

[(1 + h 1 /b) 
∫ R ∗

1 
(T 1 ) 

0 
G (x, t) dx + λt −

 

∗
1 (T 1 )] dt and observe that μ and hence �1 

C = μ − 1 depend on

nly the ratio h 1 / b rather than the absolute values of h 1 and b .

ext, we apply the L’Hospital’s Rule again and obtain 

∫ l 1 + T 1 
l 1 

u R (R 

e (T 1 ) , t) dt 

 T 1 ) 

′′ ∫ l 1 + T 1 
l 1 

u R (R 

e (T 1 ) , t) dt + [ R 

e 
1 (T 1 ) 

′ ] 2 (b + h 1 ) γ (R 

e 
1 (T 1 ) , T 1 ) 

) , l 1 + T 1 ) + u R (R 

∗
1 
(T 1 ) , l 1 + T 1 ) R 

∗
1 
(T 1 ) ′ 

. (C.4) 

here u R (R, t) = (b + h 1 ) G (R, t) − b, u T (R, l 1 + T ) = (b +
 1 ) 

∫ R 
0 G T (x, l 1 + T ) dx + bλ, G T (x, l 1 + T ) = ∂ G (x, l 1 + T ) /∂ T , and

(R, T ) = 

∫ l 1 + T 
l 1 

g(R, t ) dt . 

We have used 

∫ l 1 + T 1 
l 1 

u R (R ∗(T 1 ) , t) dt = 0 in Step 1 and

 R (R e 
1 
(T 1 ) , l 1 + T 1 ) = 0 in Step 2. 

To evaluate the right hand side of (C.4) , we obtain the

ollowing. First, using the normal standardization above,

e obtain G T (x, l 1 + T ) = − λg(x,l 1 + T ) 
σ
√ 

l 1 + T 
− [ x −λ(l 1 + T )] g(x,l 1 + T ) 

2 σ (l 1 + T ) 
√ 

l 1 + T 
,

 R 
0 G T (x, l 1 + T ) dx = − λ

σ
√ 

l 1 + T 
G (R, l 1 + T ) + 

σ

2 
√ 

l 1 + T 
g(R, l 1 + T ) 

nd hence lim T 1 →∞ 

u T (R, l 1 + T 1 ) = bλ for any R ≥ 0. Second,

ollowing Rao (2003) , we use γ (R 1 (T 1 ) , T 1 ) ≈ [ G (R 1 (T 1 ) , l 1 ) −
 (R 1 (T 1 ) , l 1 + T 1 )] /λ and obtain lim T 1 →∞ 

γ (R e 
1 
(T 1 ) , T 1 ) = (1 − ω) /λ

ince G (R e 
1 
(T 1 ) , l 1 + T 1 ) = ω and lim T 1 →∞ 

G (R e 
1 
(T 1 ) , l 1 ) = 1 . Finally,

sing the solution of R e 
1 
(T 1 ) above, we obtain lim T 1 →∞ 

R e 
1 
(T 1 ) 

′′ = 0 .

he substitution of these results as well as lim T 1 →∞ 

R e 
1 
(T 1 ) 

′ 
nd lim T 1 →∞ 

R ∗
1 
(T 1 ) 

′ as given above into the right hand side of

C.4) yields lim T 1 →∞ 

μ = { bλ + λ2 (b + h 1 )[ h 1 / (b + h 1 )] /λ} / { bλ +
(b + h 1 )(1 − δ) − b] λ[1 − (1 − ω) /δ] } = 1 / [ ω − (1 − ω − δ) 2 /δ] 

fter simplification. It is easy to verify that (1 − ω − δ) 2 /δ and

ence 1 / [ ω − (1 − ω − δ) 2 /δ] are increasing functions of δ and

herefore lim T 1 →∞ 

μ ≥ 1 /ω since 1 − ω < δ < 1 . This proves

im T 1 →∞ 

�1 
C 

≥ h 1 /b. 
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